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“I can’t wait 
to see what 

happens 
when our 
industries 
merge.”

Henry Ford and Thomas Edison
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Reduced energy intensity has had 30× the impact of renewable growth 
(United States, 1965–2018p, not weather-normalized, EIA data)
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1975–2018p savings  
from intensity reduction:  

2,589 qBTU

1975–2018p growth in  
total renewable output: 

87 qBTU

Primary energy use,  
1965–1975

Energy saved by reduced intensity
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Heresy Happens
US primary energy intensity, 1975–2017
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A new technical paper on integrative design



Lovins House, Old Snowmass, Colorado (1983)



US office buildings: >5–10× best-efficiency gains in 5 years 
(site energy intensities in kWh/m2-y; US office median ~293)

284➝85 (–70%)

2013 retrofit

~277➝173 (–38%) 
2010 retrofit

...➝108 (–63%)  
2010–11 new

...51 (–83%) 
2015 new

Yet all these technologies existed well before 2005!

...21 (–93%) 
…and in Germany, 

2013 new 
(office and flat)



Infosys’s 1.5 million m2  of 22k-m2 office blocks (2009–14) in six cities: 

EPI fell 80%, to 66 kWh/m2-y  

with capex 10% to 20% lower than usual, and comfort better
Courtesy of Peter Rumsey PE FASHRAE (Senior Advisor, RMI) and Rohan Parikh (then at Infosys in Bengaluru, now at McBERL)

5x-more-efficient new Indian commercial buildings



Cooling midrise apartment buildings in India
DOUBLE'WALL'SYSTEM'—'WITH'0.8m'CAVITY' DOUBLE'WALL'SYSTEM'—'VENTED'AT'THE'TOP'—'AIR'INTAKE'AT'GROUND'LEVEL'

Design courtesy of Dhiru Thandani AIA

5–10% urban window a/cs could reach 50–60% by 2030, adding 150 GW peak load 
Requiring efficient a/c (superefficient.org) could save ≥40 GW
Requiring/incentivizing smart a/c could add ≤110 more GW of demand response 
Could use on-bill financing, as India did for 75M LED lamps 
Could meanwhile adopt/encourage efficient building envelopes needing little/no a/c

http://superefficient.org


“Energiesprong” unsubsidized mass retrofit of public housing

Before: 6 Dutch units, each with  
annual energy bills ~€1.5–2k

After: net-zero-energy, expected soon  
to be financed just from energy savings;  
made affordable by industrializing the 
manufacturing: retrofit originally cost  

€150k/unit, now €75k (15% subsidized), 
self-financing target ~€65k,  

long-term goal €40k



“Tunneling through the cost barrier” in peer-reviewed studies  
of ambitious European building retrofits

European retrofitted building 
savings reported 2006–13 

(IPCC AR5 WG3 p 703), 3%/y 
real discount rate over 30 y.  
Note that the better cases 

show virtually no rise in cost up 
to >90% savings. Some 

cost more, but they needn’t.

Sources: BP, except IEA for enewable heat. Electricity is shown at its heat value, 3.6 MJ/kWh, not at its primary input to an equivalent thermal power plant. Primary-to-final losses are not reflected.

IPCC AR5 WG3 pp 702–704 (2014) reports that 
high-ambition European new (left) and retrofit 
(right) buildings show no significant increase in 
the cost of saved energy up to ≥90% savings. 
Some examples do show higher costs, but they 
needn’t: whatever exists is possible.
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3-4x Energy Productivity in Buildings, 2x in Industry
Same or better services

Source: Reinventing Fire, RMI, 2011



RMI’s latest >$40b worth of integrative design in 
diverse industrial projects—retrofits and newbuilds 
(solid = built, shaded = incomplete data, circle = not yet built) 

Retrofits
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20 paths to decarbonizing process heat (e.g. for cement)
Eliminate need: onsite building services vs remote infrastructure, 3D printing/local mfg., chemical microreactors, telecoms     
    vs roads, shared & connected mobility vs parking, urban form vs automobility (⅓ less concrete) 
Service, not stuff: Solutions-economy business models (structural services not tons of cement, mobility services,…) 
Productive use: Elegantly frugal structural design with appropriate safety margins, rewarding civil engineers for quality 

Use other materials: e.g., ultralight carbon-fiber cars for heavy metal cars, timber for concrete, adobe/caliche,… 
Increase substituents: fly-ash, ground glass, rice-hull derivatives, nano or fume silica,… for clinker, bamboo for rebar 
Improve materials-quality uniformity (3⨉ in cement by eliminating Chinese shaft kilns) 
Materials efficiency: e.g., fabric concrete forms (≥2⨉), tension not compression structures (~8⨉), Girshenfeld, Miralon 
Close materials loops: longevity, dematerialization, reuse, remanufacturing, recycling, downcycling,…  
Less onsite waste via ontime delivery (Cemex), tighter specs, Smart crushing/unhydrated cement recovery  
Capture significant knock-on effects such as reduced energy to transport cement, build roads & factories,… 

Cleaner stuff: Substitute carbon-free or -positive chemistries (Solidia, Calera, Novacem,…) 
Processes requiring less or no heat or (biomimetically—abalone shell) 
Processes requiring lower temperatures: olivine+steam, ecocement, Bang bacterial cement, geopolymers,… 

Make better: More-efficient processes, equipment, and controls 
Heat recovery and cascading, cogeneration: e.g., McKay’s Hong Kong dioxin-free municipal-solid-waste cogen 

Make cleanly: Fuel-switching: biofuels, bioprocessing byproducts, waste solvents, old tires, crop wastes,… 
Solar process heat (logical evolution for solar concentrators; can include cogen; feasible even with cloud) 
Renewable electricity for heat pumps—now 160˚C, soon >200˚C 
Renewable electric process heat or plasma 
Renewable hydrogen process heat or reductant



thin, long, crooked fat, short, straight

Designing to save ~80–90% of pipe and duct friction— 
equivalent to about half the world’s coal-fired electricity

Typical paybacks ≤1 y retrofit, ≤0 new-build
But not yet in any textbook, official study, or industry forecast



Designing to save ~80–90% of pipe and duct friction— 
by making them fat, short, and straight

Big pipes, small pumps
Nonorthogonal layout, 3D diagonals, few & sweet bends



Retrofitted Low-Friction Piping Layout

Images courtesy of  
Peter Rumsey, PE,  FASHRAE



Power Plant Power Grid Motor/Drivetrain Pump/Throttle Pipe

-70% -9% -12% -55% -20%

100
Energy units

10%
Delivered flow

Start saving downstream



Power Plant Power Grid Motor/Drivetrain Pump/Throttle Pipe
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For best ultralighting, migrate advanced composites  
from military & aerospace to automobiles

95% carbon composite, 1/3 lighter, 2/3 cheaper 



Hypercar Revolution midsize concept SUV (2000) 
on-road 3.6 L/100 km (gasoline) or 2.1 (H2)  
carbon-fiber structure, ≤2-y retail payback

Toyota 1/X carbon-fiber concept PHEV sedan (2007) 
Prius size, 1/2 fuel use (1.8 L/100 km), 1/3 weight

Bright IDEA 1-T 5-m3 PHEV fleet van (2009) 
aluminum, 3–12×-efficiency, needs no subsidy

Reinventing the Wheels

BMW i3 4-seat electric, carbon-fiber passenger cell 
2013–  mass-production, >150k sold @ $41–45k  

1.9 L/100 km (124 mpge), 247-km range (≥370 w/REx)



BMW MY2013’s ~120–150-kg carbon-fiber-composite passenger cell; mc 1,250 kg2013 BMW i3, http://www.superstreetonline.com/features/news/epcp-1303-bmw-i3-concept-coupe/

A competitive carbon-fiber electric car, 2013– 

BMW’s sporty, 1250-kg 4x-efficiency i3 was profitable from the first unit, because it: 
• pays for the carbon fiber by needing fewer batteries (which recharge faster) 
• saves ~2.5–3.5 kg total for each kg of direct mass saved (Detroit says <1.3–1.5) 
• needs two-thirds less capital, ~70% less water, ~50% less energy, space, time 
• requires no conventional body shop or paint shop 
• provides safe, clean, quiet, superior working conditions 
• delivers 1.9 Lequiv/100 km (124 mpge) on US 5-cycle test, 1.7 Ger., ~1.6 old US cycle  
• provides exceptional visibility, agility, traction, and crash safety

https://w
w

w.autocar.co.uk/car-new
s/industry/bm

w
-set-m

ake-m
ore-extensive-use-carbon-fibre

sglcarbon.com

http://sglcarbon.com
http://sglcarbon.com
http://sglcarbon.com
http://sglcarbon.com
http://sglcarbon.com
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Tripled-Efficiency Trucks and Planes



What if oil owners’ biggest threats weren’t on the radar? 



Powering a home with just 27 watts of solar PV

~25-watt DC superefficient appliance package (LBNL), shown with 40 W PV panel 

1 x 400 lm LED bulb (5 W), 1 x 300 lm LED tube (3 W)

1 x 23-inch / 56-cm LED-backlit LCD TV (12-13 W)

1 x 10-inch / 25-cm table fan (5 W), 1 x clock radio, 1 x mobile phone charger (~2 W)

Photo courtesy of Lawrence Berkeley National Laboratory

25 W incandescent 
lamp (~210–250 lm) 
shown for comparison,  
not PV-powered
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Sources: L: courtesy of  Dr. Yukio Narukawa (Nichia Corp., Tokushima, Japan) from J. Physics. D: Appl. Phys. 43(2010) 354002, doi:10.1088/0022-3727/43/35/354002, updated by RMI with CREE lm/W data, 2015, www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier;. R: RMI analysis, at average 2013 
USEIA fossil-fueled generation efficiencies and each year’s real fuel costs (no O&M); utility-scale PV: LBNL, Utility-Scale Solar and USDOE, Wind Technologies Market Reports, “Windbelt” (Interior zone) windfarms’ average PPA; German feed-in tariff (falls with cost to yield ~6%/y real return): Fraunhofer ISE, Cost Perspective, Grid and Market 
Integration of Renewable Energies, p 6 (Jan 2014); all sources net of subsidies; graph inspired by 2014 “Terrordome” slide by Michael Parker at Bernstein Alliance
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Netherlands: trade electricity with fellow-customers



Storage 
(including EVs)

Distributed 
renewables

Flexible loads 

End-use efficiency

New financial + business 
models, including utility 

blockchain and 
transactive energy

System  
re-engineering

Customer 
preferences 

including 
resilience

Regulatory shifts

Utility revenues
$
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A B Lovins et al., “Relative deployment rates of renewable and nuclear power: a cautionary tale of two metrics,” El. Res. & Soc. Sci. 38:188–192 (2018), doi:10.1016/j.erss.2018.01.05.  
Preliminary 2017 data from IEA, “Global Energy & CO2 Status Report 2017,” 22 Mar 2017, http://www.iea.org/publications/freepublications/publication/GECO2017.pdf, 

Worldwide electricity generation by source, 1971–2017p

http://www.iea.org/publications/freepublications/publication/GECO2017.pdf
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Europe, 2015–18 renewable 
% of total electricity 
consumed 

Choreographing Variable Renewable Generation

38%

71%
Denmark 2017 (2013 windpower peak 136%—
55% for all December)

74%
Scotland  2018

46%
Peninsular Spain (2016, 27% without hydro) 

66%
Portugal (2018, 42% without hydro) (2011 & 2016 peak 100%)

Germany 2018  (2016 peak 88%, 2018 ~90–100%)



Grid flexibility resources 
cost

efficient use

demand 
response

 (all values shown are conceptual and illustrative)

accurate 
forecasting 

of wind + PV

diversify 
renewables  
by type and 

location

dispatchable 
renewables and 

cogeneration

bulk 
storage

fossil-
fueled 

backup

distributed 
electricity 
storage 
incl. EVs

thermal 
storage

ability to accommodate 
reliably a large share of  
variable renewable power 

 (hydrogen storage not shown because its quantity is indeterminate)



Accelerating EV growth and falling battery price
Global EV sales are growing at a ~65% CAGR, with battery pack price already averaging below $200/kWh  

Sources: BNEF; Tesla Model S:  https://www.greencarreports.com/news/1103667_electric-car-battery-costs-tesla-190-per-kwh-for-pack-gm-145-for-cells 

Quattro: https://electrek.co/2017/06/28/audi-electric-car-battery-cost/for-2016-145kwh-cell-cost-volt-margin-improves-3500/

Battery pack price, 2010–2018 (2018 $/kWh)
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From PIGS to SEALS

Personal Internal-combustion Gasoline Steel Shareable Electric Autonomous Lightweight  
[mobility-as-a-]Service



中华人民共和国 
国民经济和社会发展第 
十三个五年规划纲要 

2016年03月17日



Transportation problems in China



From disorganized chaos to smooth travel experience



From superblock to walking distance

Graphics courtesy of Peter Calthorpe





158%+$5T 0
in savings 
(net present 
value, private 
internal cost)

bigger economy oil, coal, nuclear 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Solutions to:





587%+ 42%
in savings

经济节约

bigger GDP

经济规模

less carbon

碳排放减少

RMB21T2010 NPV
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Reinventing Fire applied worldwide will keep within the 
2010–2050 carbon budget for 50% probability of 2Cº 

2"

Worldwide annual CO2 emissions under Reinventing Fire scenario 

2034: cumulative post-2010 
emissions exceed 1.5Cº budget 

Assumptions:  
•  CO2 emissions are calculated using Reinventing Fire for U.S., Roadmap 2050 for EU, Reinventing Fire: China for China. 

Other OECD is calculated using the Reinventing Fire 2010–2050 trajectory; Other Non-OECD using the Reinventing Fire: 
China 2010–2050 trajectory. 

•  CO2 budget is calculated by ETH Zürich from IPCC data and assumptions for non-CO2 emissions to define an energy-
related CO2 budget.  

•  Cumulative CO2 emissions for 2010–2050 under the Reinventing Fire scenario are 1121 Gt by 2050, 79 Gt below the 
1200 Gt 2010–2050 carbon budget for 50% probability of ≤2C˚ average temperature change, but 331 Gt above the 
carbon budget for ≤1.5Cº average temperature change.  

Business-as-usual 

…and with conservatively assessed natural-systems carbon removal…
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1900: where’s the first car?

Easter Parades on Fifth Avenue, New York, 13 years apart

1913: where’s the last horse?

Images: L, National Archive, www.archives.gov/research/american-cities/images/american-cities-101.jpg; R,  shorpy.com/node/204. 
Inspiration: Tona Seba’s keynote lecture at AltCar, Santa Monica CA, 28 Oct 2014, http://tonyseba.com/keynote-at-altcar-expo-100-electric-transportation-100-solar-by-2030/



From the Age of Carbon to the Age of Silicon
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